3.251 \(\int \frac{1}{x^2 (a-b x^2)^5} \, dx\)

Optimal. Leaf size=118 \[ \frac{105}{128 a^4 x \left (a-b x^2\right )}+\frac{21}{64 a^3 x \left (a-b x^2\right )^2}+\frac{3}{16 a^2 x \left (a-b x^2\right )^3}+\frac{315 \sqrt{b} \tanh ^{-1}\left (\frac{\sqrt{b} x}{\sqrt{a}}\right )}{128 a^{11/2}}-\frac{315}{128 a^5 x}+\frac{1}{8 a x \left (a-b x^2\right )^4} \]

[Out]

-315/(128*a^5*x) + 1/(8*a*x*(a - b*x^2)^4) + 3/(16*a^2*x*(a - b*x^2)^3) + 21/(64*a^3*x*(a - b*x^2)^2) + 105/(1
28*a^4*x*(a - b*x^2)) + (315*Sqrt[b]*ArcTanh[(Sqrt[b]*x)/Sqrt[a]])/(128*a^(11/2))

________________________________________________________________________________________

Rubi [A]  time = 0.0487778, antiderivative size = 118, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 3, integrand size = 14, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.214, Rules used = {290, 325, 208} \[ \frac{105}{128 a^4 x \left (a-b x^2\right )}+\frac{21}{64 a^3 x \left (a-b x^2\right )^2}+\frac{3}{16 a^2 x \left (a-b x^2\right )^3}+\frac{315 \sqrt{b} \tanh ^{-1}\left (\frac{\sqrt{b} x}{\sqrt{a}}\right )}{128 a^{11/2}}-\frac{315}{128 a^5 x}+\frac{1}{8 a x \left (a-b x^2\right )^4} \]

Antiderivative was successfully verified.

[In]

Int[1/(x^2*(a - b*x^2)^5),x]

[Out]

-315/(128*a^5*x) + 1/(8*a*x*(a - b*x^2)^4) + 3/(16*a^2*x*(a - b*x^2)^3) + 21/(64*a^3*x*(a - b*x^2)^2) + 105/(1
28*a^4*x*(a - b*x^2)) + (315*Sqrt[b]*ArcTanh[(Sqrt[b]*x)/Sqrt[a]])/(128*a^(11/2))

Rule 290

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> -Simp[((c*x)^(m + 1)*(a + b*x^n)^(p + 1))/(
a*c*n*(p + 1)), x] + Dist[(m + n*(p + 1) + 1)/(a*n*(p + 1)), Int[(c*x)^m*(a + b*x^n)^(p + 1), x], x] /; FreeQ[
{a, b, c, m}, x] && IGtQ[n, 0] && LtQ[p, -1] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 325

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[((c*x)^(m + 1)*(a + b*x^n)^(p + 1))/(a*
c*(m + 1)), x] - Dist[(b*(m + n*(p + 1) + 1))/(a*c^n*(m + 1)), Int[(c*x)^(m + n)*(a + b*x^n)^p, x], x] /; Free
Q[{a, b, c, p}, x] && IGtQ[n, 0] && LtQ[m, -1] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{1}{x^2 \left (a-b x^2\right )^5} \, dx &=\frac{1}{8 a x \left (a-b x^2\right )^4}+\frac{9 \int \frac{1}{x^2 \left (a-b x^2\right )^4} \, dx}{8 a}\\ &=\frac{1}{8 a x \left (a-b x^2\right )^4}+\frac{3}{16 a^2 x \left (a-b x^2\right )^3}+\frac{21 \int \frac{1}{x^2 \left (a-b x^2\right )^3} \, dx}{16 a^2}\\ &=\frac{1}{8 a x \left (a-b x^2\right )^4}+\frac{3}{16 a^2 x \left (a-b x^2\right )^3}+\frac{21}{64 a^3 x \left (a-b x^2\right )^2}+\frac{105 \int \frac{1}{x^2 \left (a-b x^2\right )^2} \, dx}{64 a^3}\\ &=\frac{1}{8 a x \left (a-b x^2\right )^4}+\frac{3}{16 a^2 x \left (a-b x^2\right )^3}+\frac{21}{64 a^3 x \left (a-b x^2\right )^2}+\frac{105}{128 a^4 x \left (a-b x^2\right )}+\frac{315 \int \frac{1}{x^2 \left (a-b x^2\right )} \, dx}{128 a^4}\\ &=-\frac{315}{128 a^5 x}+\frac{1}{8 a x \left (a-b x^2\right )^4}+\frac{3}{16 a^2 x \left (a-b x^2\right )^3}+\frac{21}{64 a^3 x \left (a-b x^2\right )^2}+\frac{105}{128 a^4 x \left (a-b x^2\right )}+\frac{(315 b) \int \frac{1}{a-b x^2} \, dx}{128 a^5}\\ &=-\frac{315}{128 a^5 x}+\frac{1}{8 a x \left (a-b x^2\right )^4}+\frac{3}{16 a^2 x \left (a-b x^2\right )^3}+\frac{21}{64 a^3 x \left (a-b x^2\right )^2}+\frac{105}{128 a^4 x \left (a-b x^2\right )}+\frac{315 \sqrt{b} \tanh ^{-1}\left (\frac{\sqrt{b} x}{\sqrt{a}}\right )}{128 a^{11/2}}\\ \end{align*}

Mathematica [A]  time = 0.0530645, size = 92, normalized size = 0.78 \[ \frac{\frac{\sqrt{a} \left (-1533 a^2 b^2 x^4+837 a^3 b x^2-128 a^4+1155 a b^3 x^6-315 b^4 x^8\right )}{x \left (a-b x^2\right )^4}+315 \sqrt{b} \tanh ^{-1}\left (\frac{\sqrt{b} x}{\sqrt{a}}\right )}{128 a^{11/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(x^2*(a - b*x^2)^5),x]

[Out]

((Sqrt[a]*(-128*a^4 + 837*a^3*b*x^2 - 1533*a^2*b^2*x^4 + 1155*a*b^3*x^6 - 315*b^4*x^8))/(x*(a - b*x^2)^4) + 31
5*Sqrt[b]*ArcTanh[(Sqrt[b]*x)/Sqrt[a]])/(128*a^(11/2))

________________________________________________________________________________________

Maple [A]  time = 0.013, size = 78, normalized size = 0.7 \begin{align*} -{\frac{1}{{a}^{5}x}}-{\frac{b}{{a}^{5}} \left ({\frac{1}{ \left ( b{x}^{2}-a \right ) ^{4}} \left ({\frac{187\,{b}^{3}{x}^{7}}{128}}-{\frac{643\,a{b}^{2}{x}^{5}}{128}}+{\frac{765\,{a}^{2}b{x}^{3}}{128}}-{\frac{325\,{a}^{3}x}{128}} \right ) }-{\frac{315}{128}{\it Artanh} \left ({bx{\frac{1}{\sqrt{ab}}}} \right ){\frac{1}{\sqrt{ab}}}} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x^2/(-b*x^2+a)^5,x)

[Out]

-1/a^5/x-1/a^5*b*((187/128*b^3*x^7-643/128*a*b^2*x^5+765/128*a^2*b*x^3-325/128*a^3*x)/(b*x^2-a)^4-315/128/(a*b
)^(1/2)*arctanh(b*x/(a*b)^(1/2)))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^2/(-b*x^2+a)^5,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.28183, size = 721, normalized size = 6.11 \begin{align*} \left [-\frac{630 \, b^{4} x^{8} - 2310 \, a b^{3} x^{6} + 3066 \, a^{2} b^{2} x^{4} - 1674 \, a^{3} b x^{2} + 256 \, a^{4} - 315 \,{\left (b^{4} x^{9} - 4 \, a b^{3} x^{7} + 6 \, a^{2} b^{2} x^{5} - 4 \, a^{3} b x^{3} + a^{4} x\right )} \sqrt{\frac{b}{a}} \log \left (\frac{b x^{2} + 2 \, a x \sqrt{\frac{b}{a}} + a}{b x^{2} - a}\right )}{256 \,{\left (a^{5} b^{4} x^{9} - 4 \, a^{6} b^{3} x^{7} + 6 \, a^{7} b^{2} x^{5} - 4 \, a^{8} b x^{3} + a^{9} x\right )}}, -\frac{315 \, b^{4} x^{8} - 1155 \, a b^{3} x^{6} + 1533 \, a^{2} b^{2} x^{4} - 837 \, a^{3} b x^{2} + 128 \, a^{4} + 315 \,{\left (b^{4} x^{9} - 4 \, a b^{3} x^{7} + 6 \, a^{2} b^{2} x^{5} - 4 \, a^{3} b x^{3} + a^{4} x\right )} \sqrt{-\frac{b}{a}} \arctan \left (x \sqrt{-\frac{b}{a}}\right )}{128 \,{\left (a^{5} b^{4} x^{9} - 4 \, a^{6} b^{3} x^{7} + 6 \, a^{7} b^{2} x^{5} - 4 \, a^{8} b x^{3} + a^{9} x\right )}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^2/(-b*x^2+a)^5,x, algorithm="fricas")

[Out]

[-1/256*(630*b^4*x^8 - 2310*a*b^3*x^6 + 3066*a^2*b^2*x^4 - 1674*a^3*b*x^2 + 256*a^4 - 315*(b^4*x^9 - 4*a*b^3*x
^7 + 6*a^2*b^2*x^5 - 4*a^3*b*x^3 + a^4*x)*sqrt(b/a)*log((b*x^2 + 2*a*x*sqrt(b/a) + a)/(b*x^2 - a)))/(a^5*b^4*x
^9 - 4*a^6*b^3*x^7 + 6*a^7*b^2*x^5 - 4*a^8*b*x^3 + a^9*x), -1/128*(315*b^4*x^8 - 1155*a*b^3*x^6 + 1533*a^2*b^2
*x^4 - 837*a^3*b*x^2 + 128*a^4 + 315*(b^4*x^9 - 4*a*b^3*x^7 + 6*a^2*b^2*x^5 - 4*a^3*b*x^3 + a^4*x)*sqrt(-b/a)*
arctan(x*sqrt(-b/a)))/(a^5*b^4*x^9 - 4*a^6*b^3*x^7 + 6*a^7*b^2*x^5 - 4*a^8*b*x^3 + a^9*x)]

________________________________________________________________________________________

Sympy [A]  time = 1.84662, size = 155, normalized size = 1.31 \begin{align*} - \frac{315 \sqrt{\frac{b}{a^{11}}} \log{\left (- \frac{a^{6} \sqrt{\frac{b}{a^{11}}}}{b} + x \right )}}{256} + \frac{315 \sqrt{\frac{b}{a^{11}}} \log{\left (\frac{a^{6} \sqrt{\frac{b}{a^{11}}}}{b} + x \right )}}{256} - \frac{128 a^{4} - 837 a^{3} b x^{2} + 1533 a^{2} b^{2} x^{4} - 1155 a b^{3} x^{6} + 315 b^{4} x^{8}}{128 a^{9} x - 512 a^{8} b x^{3} + 768 a^{7} b^{2} x^{5} - 512 a^{6} b^{3} x^{7} + 128 a^{5} b^{4} x^{9}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x**2/(-b*x**2+a)**5,x)

[Out]

-315*sqrt(b/a**11)*log(-a**6*sqrt(b/a**11)/b + x)/256 + 315*sqrt(b/a**11)*log(a**6*sqrt(b/a**11)/b + x)/256 -
(128*a**4 - 837*a**3*b*x**2 + 1533*a**2*b**2*x**4 - 1155*a*b**3*x**6 + 315*b**4*x**8)/(128*a**9*x - 512*a**8*b
*x**3 + 768*a**7*b**2*x**5 - 512*a**6*b**3*x**7 + 128*a**5*b**4*x**9)

________________________________________________________________________________________

Giac [A]  time = 2.37003, size = 112, normalized size = 0.95 \begin{align*} -\frac{315 \, b \arctan \left (\frac{b x}{\sqrt{-a b}}\right )}{128 \, \sqrt{-a b} a^{5}} - \frac{1}{a^{5} x} - \frac{187 \, b^{4} x^{7} - 643 \, a b^{3} x^{5} + 765 \, a^{2} b^{2} x^{3} - 325 \, a^{3} b x}{128 \,{\left (b x^{2} - a\right )}^{4} a^{5}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^2/(-b*x^2+a)^5,x, algorithm="giac")

[Out]

-315/128*b*arctan(b*x/sqrt(-a*b))/(sqrt(-a*b)*a^5) - 1/(a^5*x) - 1/128*(187*b^4*x^7 - 643*a*b^3*x^5 + 765*a^2*
b^2*x^3 - 325*a^3*b*x)/((b*x^2 - a)^4*a^5)